Better Approximation of Betweenness Centrality
نویسندگان
چکیده
Estimating the importance or centrality of the nodes in large networks has recently attracted increased interest. Betweenness is one of the most important centrality indices, which basically counts the number of shortest paths going through a node. Betweenness has been used in diverse applications, e.g., social network analysis or route planning. Since exact computation is prohibitive for large networks, approximation algorithms are important. In this paper, we propose a framework for unbiased approximation of betweenness that generalizes a previous approach by Brandes. Our best new schemes yield significantly better approximation than before for many real world inputs. In particular, we also get good approximations for the betweenness of unimportant nodes.
منابع مشابه
Approximating Betweenness Centrality in Large Evolving Networks
Betweenness centrality ranks the importance of nodes by their participation in all shortest paths of the network. Therefore computing exact betweenness values is impractical in large networks. For static networks, approximation based on randomly sampled paths has been shown to be significantly faster in practice. However, for dynamic networks, no approximation algorithm for betweenness centrali...
متن کاملFurther Results on Betweenness Centrality of Graphs
Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.
متن کاملApproximating Betweenness Centrality
Betweenness is a centrality measure based on shortest paths, widely used in complex network analysis. It is computationally-expensive to exactly determine betweenness; currently the fastest-known algorithm by Brandes requires O(nm) time for unweighted graphs and O(nm + n log n) time for weighted graphs, where n is the number of vertices and m is the number of edges in the network. These are als...
متن کاملApproximating Betweenness Centrality in Fully Dynamic Networks
Betweenness is a well-known centrality measure that ranks the nodes of a network according to their participation in shortest paths. Because exact computations are prohibitive in large networks, several approximation algorithms have been proposed. Besides that, recent years have seen the publication of dynamic algorithms for efficient recomputation of betweenness in networks that change over ti...
متن کاملImproving the betweenness centrality of a node by adding links
Betweenness is a well-known centrality measure that ranks the nodes according to their participation in the shortest paths of a network. In several scenarios, having a high betweenness can have a positive impact on the node itself. Hence, in this paper we consider the problem of determining how much a vertex can increase its centrality by creating a limited amount of new edges incident to it. I...
متن کامل